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ABSTRACT Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces,
but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on
idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for
both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter
are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions
to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the
molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases
relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric
stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientatlonal dependence,
one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion
interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the
broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of
aggregation, precipitation, and crystal growth.

INTRODUCTION

Protein molecules interact with like proteins, with different

proteins, and with other materials by a number of mecha-

nisms, including electrostatics, van der Waals (dispersion)
forces, and solvation forces. Much of the current under-

standing of such interactions has been inferred from obser-

vations of bulk thermodynamic behavior, such as solubility,

osmotic pressure, and adsorption (Melander and Horvath,

1977; Vilker et al., 1981; Norde, 1986: Haynes et al., 1992).
More recently, however, intermolecular forces have been

measured directly for many materials, including proteins, by

techniques such as the surface forces apparatus (Afshar-Rad
et al.. 1987: Leckband et al., 1994), atomic force micros-

copy tDucker et al., 1991), and osmotic stress (Prouty et al..
t985; Colombo et al., 1992). Interpretation of interaction

data is usually made by assuming additive contributions

from the different types of forces believed to be important,

but some of these forces are understood incompletely at the

molecular level, particularly for complex macromolecules

such as proteins. As more measurements of this type
emerge, it is important to examine the manifestation of the

different forces in proteins, to ensure both meaningful and

accurate interpretation of experimental data and realistic

prediction of macroscopic behavior of proteins via incorpo-

ration of the interactions in solution thermodynamic models.
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Because experimental decomposition of the protein inter-
actions into their individual contributions is not feasible, a

solid foundation is needed for predicting them theoretically;

such predictions should be based, as far as possible, on

explicit protein structural information and solution condi-
tions. Structures obtained for many proteins by means of

x-ray crystallography and NMR have been utilized in var-

ious studies seeking to understand intramolecular, and to

some extent intermolecular, interactions involving proteins,

within the framework of models that incorporate explicitly

each atom in the protein (Lu and Park. 1990; Northrup et al.,
1990; Lim and Herron, 1992). Unfortunately, the number of

atoms involved makes this approach very expensive com-

putationally for studying intermolecular processes involving

proteins, especially if the solvent is treated atomistically as
well. A common alternative is to model a protein in a

colloidal context, taking the simplified view of a protein

molecule as a charged, hard sphere or ellipsoid (Vilker et

al., 1981; Jeon and Andrade, 1991; Haynes et al., 1992;

Roth and Lenhoff, 1993, 1995), an approach that obviously

neglects most geometric information apart from the molec-
ular size. An intermediate route is to retain the colloidal

approach but to include some structural characteristics of
the molecules. A considerable amount of work has been

done in this regard through the use of cavity dielectric
models (Kirkwood, 1934) in molecular electrostatic com-

putations, which have been used to describe molecular

events including electron transport, enzyme-substrate steer-

ing, shifts in titration behavior, and adsorption to surfaces

(Warwicker and Watson, 1982; Klapper et al., 1986; Bash-

ford and Karplus, 1991; Yoon and Lenhoff, 1992; Roush et

al., 1994). In these applications, continuum electrostatic

equations are employed, with structural considerations in-

corporated via the description of the protein boundary and
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its internal charge distribution derived from structural data:

the crystallographic structure is assumed to be an adequate

approximation to the structure in solution.

Here xve characterize van der Waals (dispersion) interac-

tions involving proteins in a similar fashion. Dispersion

forces arc typically of short range relative to. for example,
electrostatic lk)rces. Their importance is a consequence of

the fact that. tor a protein molecule interacting with another

protein molecule or with a surface in water, they are attrac-

tive under most conditions of interest: their strength in-
creases sharply as the intervening distance decreases. As a

result, accounting for dispersion interactions must be in-

cluded in the interpretation of force measurements at short

range and in analyses of aggregation in solution or of
adsorption to a surface.

The van der Waals interactions of atoms comprise a sum
of Keesom. Debye, and London contributions, the energy of

each of which decays as the inverse sixth power of separa-

tion distance tbr nonretarded (i.e.. short-range) interactions

(Prausmtz et al.. 1986). For dipole moments less than about

1 Debve. the largest contribution is made by London dis-
persion forces, for which the prefactor is proportional to the

product of the atomic polarizabilities. The van der Waals

interaction between two macroscopic bodies is the resultant
of the interactions of their constituent atoms.

Most analyses of van der Waals energetics in colloidal

bodies utilize the simple approach of Hamaker (1937), who
postulated that the contributions of the individual atoms to

the overall dispersion energy should be approximated by

pairwise summation. For the case of two macroscopic bod-
ies comprising materials that are isotropic with respect to

their polarizabilities, this corresponds to an integration over

their volumes, and their interaction energy across a vacuum

is thus found in the Hamaker analysis by integrating over

the volumes V_ and V, of the two bodies:

A_zflrr- /I,dvtdl"z'.XFI2 = r6
VI" Vl "

(1)

Here rl2 is the distance between volume elements vt and w

in the two bodies, A_2 is the Hamaker constant, dependent

only on the polarizability and number density of atoms in

the two media, and the change in free energy AFt, is
relative to that of the bodies at infinite separation. For two

bodies interacting across a third medium, such as water, the

same result applies, but the value of the Hamaker constant,

now denoted as At32, is modified to account for the polar-
izability of the intervening medium.

The Hamaker approach correctly associates the material

property A tz with the mutual polarizabilities of the materials

involved. A number of approaches have been developed for

estimating the value of the Hamaker constant; these can be

broadly classified as microscopic and macroscopic (Visser,

1972: Nir, 1976). Microscopic theories attempt to relate the

Hamaker constant to molecular properties, such as ioniza-

tion potential, but these do not have a clear meaning for

macromolecules such as proteins. An alternative, more rig-
orous framework for the estimation of this property is the

macroscopic Lifshitz theory, tDzyaloshinskii et at., 1961").

That the initial discussion of Lifshitz theory, was in terms of

quantum field theory, placed it beyond the reach of much of

the community interested in van der Waals interactions
between macroscopic surfaces, but simpler derivations of

the essential equations were presented subsequently (van

Kampen et al.. 1968). as were insightful guides to practical

use of the equations (Gingell and Parsegian. 1972; Parseg-

Jan. 1975: Hough and White, 1980"). The practical result that
emerges from Lifshitz theory is that the van der Waals

interaction energy can be estimated from the frequency-

dependent dielectric spectra of the materials involved (in-

cluding solvent) and the geometry. As discussed in more
detail under Methods below, calculations for tractable ge-

ometries suggest that the material and geometric compo-

nents are adequately represented by the Hamaker form (Eq.
I) at close separations (Mitchell and Ninham. 1972; Kiefer

et al.. 1976). Consequently. utilization of the Hamaker

approach should be acceptable for arbitrary, geometries,

with the material property, in the form of the Hamaker
constant, found from the dielectric spectra according to

Lifshitz theory. Relatively scant dielectric/absorption data
can be sufficient to calculate Hamaker constants of fair

accuracy (tens of percent) (Parsegian and Ninham, 1969;

Gingell and Parsegian, 1972: Hough and White, 1980), but

it is apparent that detailed optical data should translate into
a more accurate estimate of the Hamaker constant.

Thus modeling van der Waals forces in colloidal systems
becomes a matter of approximating the geometry of the

bodies and determining the value of the Hamaker constant.
It is these two aspects that we investigate for proteins, with

both the geometry and the material properties accounted for

more thoroughly than has been done previously.

For many simple geometries, analytical expressions for

the geometric part can be obtained; a large number of them

are given in Lyklema (1991). A sphere is commonly used to

approximate the shape of a protein, and for this case the

analytical expressions for the van der Waals interaction

energy are as follows (Hunter, 1986):

Sphere-infinite plane:

- -- + In (2)
AFspl_r_plane 6 [. z + 2R + z _ '

where R is the radius of the sphere and z is the nearest

distance between sphere and plane.

Sphere-sphere:

_212R,R2 2R,Rz'-kF,¢,_a,¢_._ - re - (RI + Rz) z + re - (Rt - R_) z

(3)

+ In (RI - R:)2}J '

where Rt and R_. are the radii of the spheres and r is the

center-to-center distance. Eqs. 2 and 3 illustrate the short-
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range nature of van der Waals interactions: because Ha-

maker constants are typically on the order of kT, where k is

the Boltzmann constant and T is the absolute temperature,

the mathematical forms of the equations suggest that the

free energy of interaction is significant only at separation

distances much less than the sphere radii. The applicability

of the sphere approximation at such short range is the first

major aspect of the present work. We present calculations

based on Eq. 1 as applied to geometries derived from

protein crystallographic structures and show the results to

differ appreciably from those given by Eqs. 2 and 3.

The second aspect of the work is the calculation, using

Lifshitz theory and available spectroscopic information, of

Hamaker constants for interactions of proteins with various

other materials of interest. Although our results for protein-

protein interactions here are in line with previous theoretical

and experimental estimates, the overall conclusion of the

work is that generally accepted estimates of the magnitude

of van der Waals interactions involving proteins are much

higher than the true values. This outcome has important

implications for analyses of protein behavior in solution and

near surfaces, even in the event that the discrepancies we

calculate are offset by deviations from the assumptions

inherent in our analysis.

METHODS

Geometry

We utilize the approach of Hamaker. but also incorporate the effect of

protein molecular geometry. To accomplish this. the integral in Eq. 1 must

be evaluated for geomemes in which one or both interacting bodies have
the shape of a protein molecule: we investigate both protein-protein and

protein-plane interactions. In principle, the protein molecule can be repre-

sented in the integral as a single monolithic body. However. we find it

more efficient computationally to perform the calculation as a volume

inte_ation over spheres representing each of the molecular groups com-

prising the macromolecule. A molecular group refers to any nonhydrogen

atom (carbon. nitrogen, oxygen, etc.) and all hydrogens bonded to it
_Bondi. 1968).

The use of molecular groups accounts for the different sizes of atoms or

groups depending on their bonding state. To perform a piecewise volfime

integration in a consistent manner, one needs the piecewise volumes to sum

to the correct total volume. Methods involving van der Waals radii are

simplistic, as sums of the atomic volumes using van der Waals radii are

consistently higher than volumes indicated by the molecular weight and

specific volume of the proteins (Table 1). The Bondi group volumes

represent only the volume occupied by the atoms comprising the groups:

formation of a crystalline solid or a folded globular protein results in the

packing of these groups with a density consistently close to 0.75 (Richards,

1974; Chothia, 1975). When the group volumes are rescaled accordingly.

the total volume calculated with molecular groups agrees well with the

expected values from bulk measurements for seven of the proteins that we

studied (Table 2), for which data are tabulated by Creighton (1993").
For the van der Wants calculations, each molecular group was taken as

a sphere with volume corresponding to the volume of the group with its
center at the location indicated by the protein coordinate file. obtained from

the Brookhaven Protein Data Bank (Bemstein et al., 1977). The van der

Waals energy for a protein molecule and a surface was then calculated as

the sum of the energies of each of the group spheres interacting with the

surface, by application of E,q. 2. For a given protein and gap distance, the

interaction energy was computed at 1669 evenly distributed orientations.

Similarly, the van der Waals energy for two interacting protein molecules
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TABLE 1 Molecular volume of lysozyme calculated from its

structure by means of several methods

Method Volume Ilk a)

Density/molecular weight* 16,700

PQMS program; 15,870
Sum of residue volumes _ 17,900

Van der Waals radii t 18,630

Van der Waals radii:: 21,120

Van der Wants radii** 22,470

Group contributions*: 12,700
Group comnbutions/0.75 17,000

*Creighton (19931.
:Connolly ( 1985, 1993).
_Chothia (19751.

_Bondi (1964).
_lChothia I 1975).

**McCammon et al. (1979).

;:Bondi t 1968).

was calculated from Eq. 3 as the sum of the energies of each group sphere

in one molecule with each in the other: 2500 evenly distributed orientations

were used. Calculations were performed for nine proteins, namely those

listed in Table 2 plus t-a-amylase (Aspergr/lus orvzae) and pepsin (pig).

Hamaker constants

The essential physical picture of dispersion interactions that is formalized

in Lifshitz theory is that the fluctuating dipoles within the interacting media

establish electric fields that interact both constructively and destructively.

The result of these fluctuating, many-bodied interactions is the formation

of a standing wave between the two bodies whereby only certain modes, or

frequencies, of electromagnetic radiation may pass. Although the allowed

modes cannot be solved for explicitly, they do form an implicit dispersion

relation D in terms of complex dielectric data on the imaginary axis. For

two infinite planes, denoted by I and 2. separated by a distance z occupied

by intervening medium 3. the expression for the dispersion interaction

energy is given by

±F,3:(z)= kr QdQ In[D(il ..Q)]. (4)
2 rr z-a

n=O

where Q represents the wave vectors and the dispersion relation is given by

O(i_o, Q) = 1 - ytG't2 e-'O', (5)

TABLE 2 Comparison of measured molecular volume,= of

proteins with computed volumes using molecular groups
(Bondi, 1968)

Measured volume Groups volume
Protein (_.;/molecule) (_,_lmolecule)

Carbonic arthydrase (human) 34,800 34,9(X)

Chymotrypsinogen A (bovine) 30,700 30,800

Myoglobin (sperm whale) 22.000 20,900
Ribonuclease (bovine) 15,000 16,100

Lysozyme (hen egg white) 16,700 17,000

Trypsin (bovine) 28,000 27,900
Cytochrome c (tuna heart) 14,600 13,800

Measured values are calculated from molecular weight and partial specific
volume tdata from Creighton. 1993).
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m which

Y°_'= e_(i_.)+E.(i_j.)' (6)

_lth _:t__.J indicating the relative permittivity ol medium j at the allowed

complex frequencies i_. The prime on the summation in Eq. 4 denotes the

convennon of dividing the n = 0 term by 2. By making a change of

variables of the form x = 2Qz, it is possible to combine Eqs. 4 to 6 into the

_ame form as that given by Hamaker, i.e..

At32

AFt32(Z) - 1 2"n'Z:" (7)

with

3kT_, _ (YJ3Y'.3)"

n=O X = I

(8)

the integral in Eq. 4 has been expanded in a power series and integrated

term by term.

Although the above result, based on previous developments by Hough

and White c 1980") and Hunter c1986), was derived only for the case of two

infinite planes, it is such that the interaction is characterized by the

Hamaker constant, and the remainder of Eq. 7 is geomemc. Similarly,

calculations for the only other tractable geometry, sphere-sphere, suggest

that the Hamaker formulation t Eq. 1) remmns valid I Mitchell and Ninham,

1972; Kiefer et al., 1976). Consequently. utilization of the Hamaker ap-

proach is assumed valid for arbitrary geomemes, v, ith the Hamaker con-

stant found from Eq. 8.

Evaluation of A t_z is facilitated by the fact that the complex dielectric

constant appearing in Eq. 8 via Eq. 6 has a relatively simple physical basis

and furthermore can be constructed from a small amount of experimental

data (,Ninham and Parsegian. 1970" Hough and White, 1980). If the

permittivity is expressed in terms of its real and imaginary components.

i.e.,

_(co)= e'(oJ) + ig'(00), (9)

then _ corresponds to a phase lag in the dielecmc response and hence to

energy dissipauon. This dissipation is observable in the absorption spec-

trum of the material. Furthermore. (" is related to the desired (_(iO by a

K.ramers-Kronig relation ILandau and Lifshitz. 1960"):

2 f= xg'(x)

 (iO = l+- j0,,  ax. (to)

Additionally, for frequencies at which no absorption takes place, i.e.. g' =

0, the complex dielectric pemuttivity consists of only the real portion (_'

and is given by the square of the refractive index of the material. Using this

type of simple experimental information, others have computed Hamaker

constants and interaction energies for a number of planar and layered

materials; some summaries are included in Visser t1972), Hough and

White (1980). Lyklema (1991), and lsraelachvili (1992).

Characterization of the complete absorption spectrum thus becomes the

primary task in determining the Hamaker constant. For many materials, a

simple construction involving only the static dielectric constant, refractive

index in the visible, and an ultraviolet relaxation characterized by a Cauchy

plot provides sufficient information to estimate the Hamaker constant

reasonably well (Hough and White. 1980). Although this method repre-

sents an accessible first approximation, clearly it is desirable to test the

validity of the method against Hamaker constants calculated from the

complete absorption spectrum. Data of this detail are available for a limited

number of materials, obtained by means of reflectance or transmission

experiments over a wide range of frequencies.

For convenience of use in Eq. 8, the dielccmc data are generally

translated into a mathematical formula. The relaxations that result in the

decay from the static dielectric constant at zero frequency to a value of 1

at very high frequencies are assumed to follow the forms of a Debye

relaxation in the microwave, damped oscillator in the infrared and ultra-

violet, and plasma relaxation in the x-ray tParsegmn, t975). On the whole.

this approach was followed here as well: however, it has been argued that

the plasma resonance is implicitly included in the ultraviolet term though

and White. 1980L and so it was not included here. Relaxations in the

microwave occur for polar materials of very, high dielectric constant, such

as water, and are fitted to a form that corresponds to dipole reorientation

{Parsegian, 1975Y For most materials, the most significant relaxadons

occur in the infrared and especially the ultraviolet, where the damped

oscillator forrn is used. The complete form used for the decay is then

e(to) = ! + k l--ito-""_k _ o_+g,(--ito) + (--ito) 2'
(11)

where el(o) is the dielectric response at frequency to. l/re, is the microwave

relaxation frequency, d_, is the microwave decay amplitude, % is the

oscillator frequency (infrared or ultravioletL gj is the bandwidth of the

relaxation, f) is the oscillator decay amplitude, and i= V -'_]'7

The transmission data available for many compounds cover only the

range of frequencies from the visible through the far ultraviolet. The real

and complex parts of the dielectric permittivity of substances for which

data were available were fitted to a damped oscillator form (third term in

Eq. I 1) using a Levenberg-Marquardt method with bounds (nonnegativity)

on the variables, implemented via the IMSL routine DBCLSJ (Visual

Numerics. Houston, TX').

For interactions involving proteins, dielectric data for bovine serum

albumin tBSA) were used (lnagaki et al.. 1975). This data set was fitted to

three damped oscillators in the ultraviolet. One infrared term was also

included, corresponding to a characteristic absorption between the amide I

and amide II bands at t530 and 1650 cm - _, respectively. A value of 3 was

used for the static dielectric constant. Likewise, fits were made to poly-

styrene and water dielectric data. which are also available (Heller et al.,

1974; Parsegian, 1975). For quartz and many of the polymers, no complete

dielectric data were available; for these materials, the construction of

Hough and White (1980) was used. The characteristic UV absorption

frequency is usually obtained in this construction from a Cauchy plot of

refractive index as a function of frequency in the visible region of the

spectrum. For an absorption that can be approximated as having a sharp

peak (negligible bandwidth) and assuming negligible absorption in the

visible region over which the refractive index is measured, the Canchy plot

assumes the form (Hough and White. 1980)

_2

n 2- 1 = (n 2 -- l)--r-+ Ctrv, (12)
(Ouv

in which n is the index of refraction of the material. _uv is the character-

istic ultraviolet frequency, and Ctrv is the peak amplitude. The peak

amplitude Cuv is related to the Ninham-Parsegian representation (Eq. 11)

by

= (13)

The resulting functions in the form of Eq. 11 were used in Eqs. 6 to 8

to compute the Hamaker constant. The inner series in Eq. 8 was computed

to 500 terms, and the outer series to 2000 terms, both of which were found

to be more than sufficient. Results were checked against published values

(Hough and White, 1980) for identical inputs, and agreement to within I%

was obtained. Calculations were performed on an IBM RISe 6000 model

590 computer and required only a few seconds to obtain the Hamaker

constant for any set of input data.
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RESULTS

Geometry

.-ks discussed earlier, van der Waals interactions are of verv

,hort range relative to the dimensions of protein molecules:

consequently, we look first at results Ibr protein-surface and
protein-protein nearest separation distances of 1 ]k. For such

gaps the applicability of continuum theories is clearly in
question, but this arbitrary value facilitates illustration of

the effects involved, and we later consider the effect of gap

distance explicitly• For the relatively small and well-char-

acterized proteins that we studied, frequency histograms
showing the odentational distributions of the interaction

energy at I ]_ separation distance are quite similar to one

another: sample results for lysozyme and chymotry, psinogen
A are shown in Fig. 1. The frequency histograms for the
protein-surface interaction energies at I /k (based on results

for nine proteins) can be represented adequately by log-
normal distributions with o" values of 0.143 _+_0.015, with

no apparent correlation with protein size. For protein-pro-

tein interactions the tails are typically longer, with a small

number of highly favorable orientations observed, so the fit
to a continuous distribution is less successful.

In addition to its failure to capture the existence of a

distribution of energies with respect to orientation, a sphere

model provides a poor estimate of the magnitude of the van
der Waals interaction energy and does not accurately rep-

resent the scaling with respect to size or molecular weight.

Fig. 2 a shows the average van der Waais interaction
energies for several globular proteins interacting at 1 /_

nearest separation from a planar surface; the averages are

arithmetic ones computed over orientational distributions of

the kind shown in Fig. 1. Fig. 2 a also shows corresponding

results for spheres of equivalent volumes, calculated using

Eq. 2. Correspondingly, Fig. 2 b shows the van der Waals

interaction energies of two proteins or two spheres at a gap
distance of 1 ,_. Clearly, the assumption of a spherical

geometry overestimates the magnitude of the average van
der Waals interaction energy. In fact, for the protein-surface
case, none of the 1669 uniformly distributed orientations is
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FIGURE 1 Orientationaldistributionof dispersion interaction energies, scaled relative to the Hamakerconstant,for lysozyme andchymotrypsinogenA
at 1 A, from a planar surface or an identical molecule. Solid lines indicate fits to log-normal distribution. Protein-surface: (a) lysozyme; (b) chymo-
trypsinogen. Protein-protein: fc) lysozyme: (d) chymotrypsinogen.
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FIGURE 2 Magnitudes of dispersion interaction energies at 1 ,_ gap

distance, scaled by the Hamaker constant, for proteins of different molec-

ular weights. Average energy (11) over 1669 (protein-surface) or 2500

fprotein-proteinJ orientations, minimum energy (O), and energy for a

sphere of volume equivalent to the protein molecule (A) are shown. Solid

lines represent Eqs. t4 and 15. (a) Protein-surface; Ib) protein-protein.

as attractive as the equivalent sphere (see Fig. 2 a). For two
protein molecules, only one orientation in 2500, and then

for only one of the proteins examined, produces an interac-

tion energy greater in magnitude than that of two spheres
(see Fig. 2 b). Furthermore, these comparisons are based on

intervening gap distances; the discrepancies would, in gen-
eral, be even larger for calculations based on the centers of

the protein molecules, in view of the relative compactness

of spheres of equivalent volume.

The correlation of the average protein-surface van der

Waals energy with respect to molecular volume (Fig. 2 a)

suggests that a universal curve can be used to approximate

the magnitude of protein-surface interactions at 1-,_ sepa-
ration:

_F t = 0.40 MW °'2° (R z = 0.864),
live

(14)

where AF is the dispersion energy, A is the Hamaker con-

stant, MW is the molecular weight of the protein, and R 2 is

the correlation coefficient. The corresponding relationship

for the protein-protein case is

= 0.15 (R 2 = 0.718). (15)MWO.17

ave

Thus the scaling of interaction energy with molecular

weight is weaker than that for a sphere--only about a
one-fifth or one-sixth power dependence for the protein

versus roughly one-third for a sphere--and the magnitudes

of the interactions are generally much weaker than would be
expected from a spherical representation.

The results presented above for a 1-,t, gap can be used as

the basis for more general calculations of van der Waals

interactions involving proteins. These interactions are short-

ranged: Eqs. 2 and 3 can be used to show the distance

dependence of the van der Waals interaction energy for both

sphere-surface and sphere-sphere interactions to be roughly
IIz, where z is the gap distance, for moderately small

separations. In Fig. 3 this dependence is compared with the

average value for lysozyme molecules: the shaded regions
represent the range of energies covered by the different

orientations studied. The detailed shape effects are seen to

be less important for large z: the average interaction ener-

gies approach the sphere values, and the range of energies

becomes correspondingly smaller in each case. For smaller
z, however, the shapes of the interacting surfaces become

more influential, and the divergence between the protein

average and the sphere results increases as the intervening

distance drops. In both the protein-surface and protein-

protein cases, however, the most favorable interactions re-

main fairly close to the sphere results throughout, at least on

the logarithmic scale used. For protein-protein interactions,

the average shows a pronounced shift from the upper to the

lower side of the range as the gap distance becomes smaller,

reflecting the low frequency of highly favorable orientations
(see Fig. 1), an effect not apparent for the protein-surface

case.

Hamaker constants

Although Lifshitz theory provides a rigorous basis for cal-

culating Hamaker constants within a continuum framework,

the values obtained depend strongly on the accuracy and the

amount of detail in the representation used of the spectral

data. We have used both detailed representations of spectral

data and the Cauchy plot method (Hough and White, 1980)

in this work. For proteins, both the Cauchy plot as well as

extended data from transmission spectroscopy indicate that

the principal relaxations occur outside the range accessible

by analytical spectroscopy. We have constructed Cauchy
plots from refractive index data for several proteins (Mc-

Meekin et al., 1964), and they all indicate a characteristic

UV absorption wavelength of about 125 nm, corresponding

to 9.9 eV. The complete spectral data for BSA (Irmgaki et

al., 1975) show two distinct peaks and a shoulder, which

were fitted to the parameters shown in Table 3; the Cauchy
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results with protein molecule representedby a sphere of equivalent volume
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frequency would appear to represent a reasonable average
of the whole spectrum.

Applying these results to the computation of Hamaker

constants for protein-protein interactions in air yields sim-
ilar results for the two methods: 23.42 kT for the detailed

representation and 21.11 kT for the Cauchy plot. Thus the

two methods differ by about 10%. For comparison, the

interaction of two films of polystyrene across air serves as

a useful example of the potential discrepancies between the

use of complete spectroscopic data and the Cauchy plot

TABLE 3 Parameters for representation of BSA spectral
data in damped oscillator form (third term in Eq. 11)

¢oj(eV) _ (eVz) gj (eY)

0.205 0.0131 o
6.4 2.0 0.5

12.5 180 8
21.5 225 19

First row represents an infrared term. and the remainder are ultraviolet
terms fitted to the data of Inagaki et al. (1975).

method. The former method yields a Hamaker constant of

20.3 kT, based on the experimental data of Inagaki et al.
(1977) and fitting parameters of Parsegian (1975), whereas

the latter method (Hough and White, 1980) gives 15.7 kT.

Results for other systems confirm that discrepancies on the

order of tens of percent are typical between results obtained
by the two methods.

Because the dispersion interaction is a consequence of

differences (i.e., not just absolute values) in polarizability

across the electromagnetic spectrum, the accuracy of a

construction in a region of the spectrum can be more or less
important, depending on the other materials involved in the
interaction. This feature is encountered most often when

Hamaker constants are calculated for materials separated

not by air, but by a dielectric medium, most commonly

water. Accurate representation of the spectral information
for this intervening medium is thus imperative. For the

original water data (Heller et al., 1974), we have used an

improved set of fitting parameters (Roth and Lenhoff, 1996)

in preference to those of Parsegian (1975), and obtained

protein-water-protein Hamaker constants of 3.10 kT and

2.68 kT by the detailed and Cauchy plot methods, respec-
tively. Thus the strength of the interactions is greatly atten-

uated by the presence of the water, whereas the relative

discrepancy between the predictions of the two methods is

slightly greater.
The Hamaker constant values that we calculate are a Ettle

higher than the range suggested by Parsegian and Brenner

(1976), when accounting is made of the fact that their calcu-

lations do not include the zero-frequency contribution to the

dispersion energy. This component is screened in the presence
of electrolyte, although the extent of screening is somewhat a

matter of debate (Mahanty and Ninham, 1976). The zero-

frequency contribution to the Hamaker constant depends only

on the differences in static dielectric constant between adjoin-

ing materials; for low-dielectric materials interacting across

water, this contribution is roughly constant at a value we

calculate to be approximately 0.75 kT. The discrepancy be-
tween the values computed by us and by Parsegian and Bren-

ner probably is a consequence of the details of the fit of the
dielectric data, as discussed above for water.

Although protein-protein Hamaker constants are important

for solution thermodynamic properties, the contribution of van

der Waals interactions to protein adsorption is better charac-

terized by Hamaker constants for protein interactions with

typical sorbents. Hamaker constants for the interaction of BSA

with a variety of sorbents, with water as the intervening me-

dium, are presented in Table 4. Although the absolute values

are probably accurate only to about 30%, the variation among

materials is large enough to indicate the relative strength of

dispersion interactions in each of the systems.

DISCUSSION

The results presented above have significance for both

observed biophysical behavior of proteins and for compu-
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TABLE 4 Hamaker constants for BSA interaction with
various materials through water, calculated using detailed
representation

Material3 A_ A. JkT

BSA 310
Polyvtnyl chlonde 2.29
Polylmethylmethae_,late I t.96
Quartz 1.65
PS 1,54
Poly(tetralluoroethylene_ O.18

Data for polyslyrene, polyvinyl chloride, poly(methylmethac_'late), and
poly(tetrafluoroethylene) from Hough and While (1980"1.

rational approaches for modeling proteins. However, in
evaluating this significance it is important also to assess the

validity of the approach used and hence of the results.

Central to this issue is the fact that we have applied a theory,

that assumes rigid, homogeneous, isotropic media for sys-

tems that may display considerable structural variability

with position, direction, and time. In addition, the charac-

teristic length scales in our calculations cover a range that
extends down to the dimensions of individual water mole-

cules, whereas the theory assumes continuum properties.
Thus the results should be used with some caution, but

nonetheless we believe that their essential features ade-

quately describe the behavior of many protein systems.

The results of our geometric computations indicate a

major departure from generally accepted values for protein
van der Waals interactions. Both the extent of the orienta-

tional dependence (Fig. 1) and the disparities between the

average energies and those determined using the sphere

approximation (Fig. 2) are due to what may be classified as

surface roughness, For a folded protein of rigid conforma-
tion, only small, high-curvature parts of the apposing sur-

faces are able to approach each other closely, and much of

the molecular surface is excluded to either a planar surface

or to another protein molecule in any given configuration. In
the case of protein-protein interactions, situations in which

relatively extended parts of apposing surfaces can come into

contact lead to highly attractive interaction energies due to
van der Waals interactions as well as additional contribu-

tions such as solvation and hydrogen bonding. That such

geometric complementarity is essential for specific binding

has been widely recognized (e.g., Hendrickson et al., 1987),

as has the importance of the correct orientation for mole-

cules adding to a protein crystal. Less attention has been

paid to phenomena involving less specific interactions, such

as aggregation and precipitation. Classical colloidal theories

(see, e.g., Hunter. 1986: Lyklema, 1991; [sraelachvili,

1992) usually describe aggregation as resulting when van

der Waals attraction overcomes electrostatic repulsion be-

tween like particles. The very small number of favorable

orientations and low average interaction energy, at least for

van der Waals interactions, indicates that aggregation is less

likely for proteins than for equivalent spheres: the surface

roughness may thus contribute to a form of steric stabiliza-

tion of the protein molecules in solution. Furthermore, the

persistence of the orientational dependence at longer range

may affect the dynamics of processes such as aggregation.
precipitation, crystal growth, and ligand binding.

Although the constraint of rigidity is typical of colloidal

systems, it is not always satisfied for proteins. Because the

dispersion force between a protein and a sorbent depends

strongly on their geometric complementarity, it can be sur-
mised that an adsorbing protein molecule might gain a

substantial energetic reduction by adapting its shape to that

of the interface. This might explain partially the tendency

for proteins to denature at surfaces (Macritchie, 1976:
Kondo et al., 1992; Smith and Clark, 1992: Norde and

Favier. 1992). Likewise, the sorbent could adapt to the

adsorbing protein molecule, as is believed to be the case for

polymer "'tentacle" ion-exchange adsorbents (Mtiller, 1990).

Structural changes that enhance complementarity in protein-
protein interactions have been studied more extensively,

e.g., by examining changes in the crystallographic struc-

tures of molecules when bound in a complex (e.g., Davies et

al., 1988). In addition to such induced structural changes,

conformational fluctuations are also likely to affect the

nature of interactions, including the separation distances

between different parts of the apposing surfaces. Clearly,

the approach used here is not capable of accounting directly
for such effects, which presumably reflect dynamic events

at very short range.

Direct experimental verification of the results is difficult

because a variety of forces are manifested in any experi-

mental system, and few of them are well enough understood

quantitatively in proteins for the dispersion contribution to

be identified unambiguously. However, our protein-water-

protein Hamaker constant calculations can be compared
with measured values obtained on relatively extended inter-

acting surfaces, where geometric effects are less important.

Most of the results are from surface forces apparatus exper-
iments, the most extensive of which are those of Afshar-Rad

et al. (1987), who estimated the Hamaker constant for

protein films across water to be in the range 1.0-2.2 ×
10 -z° J (10 -20 J = 2.4 kTat 20°C); our value of 3,1 kTthus

falls near the middle of this range. In a more recent study
(Helm et al., 1991), a value of 4 × 10-21 J was determined

for the interaction of films of streptavidin in a lipid bilayer

across an aqueous 1 mM NaC1 solution. The authors attrib-
uted the lower Hamaker constant to the incorporation of the

receptor in a bilayer film that itself possesses a Hamaker
constant of 1.5-7.0 × 10 -2. J, but other possibilities sug-

gested by this work are the screening of the electrolyte and

a geometric reduction due to the fact that their films con-

sisted of a low (_5%) surface coverage of protruding pro-

tein molecules on an otherwise planar lipid bilayer. Com-

parison can also be made with the data of Srivastava (1966),
who estimated a Hamaker constant of 1.8 x 10 -2° J from

the aggregation kinetics of BSA emulsion droplets; again,

this value is quite close to that which we calculate.

Thus our calculated values of Hamaker constants appear
reasonable. However, the circumstances under which they

can be used to characterize protein van der Waals interac-
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tions over length scales much smaller than the protein
dimensions remains unclear. The central considerations

here are those of the heterogeneity and anisotropy of protein

molecules, and the question of what minimum gap distance
is needed for the continuum assumption to be applied to the

intervening aqueous medium. Clearly, length scales signif-

icantly greater than the size of a water molecule are appro-

priate. Simulations suggest that the water structure around a

protein or near a large particle approaches bulk properties
within two or three molecular layers (e.g., Tome and Patey,

1991; Gerstein and Lynden-Beli, 1993). On the other hand,
surface force measurements between mica sheets, summa-

rized by Israelachvili (1992), show details of the water

molecular layering below about 15/_ gap spaces; however,

these details are no longer apparent for surfaces that are

rougher and/or more fluid than mica. Furthermore, a com-

pensating factor for proteins is that at a given minimum gap

distance in a protein system, only very small fractions of the

apposing surfaces are, in fact, in such close proximity. It

appears reasonable, therefore, to use our quantitative results
down to gap distances on the order of 10 ,_. For relatively

small globular proteins, the interaction here is very weak,

but the semiquantitative conclusions of the geometric com-

putations (guided by Eqs. 14 and 15 along with the form of
Fig. 3) should remain largely valid, even at smaller gap

distances in the absence of appreciable structural changes.

The quantitative uncertainties obviously increase at smaller

gap distances, though, especially in the values of the Ha-

maker constants. These observations may be compared with

the application of continuum molecular electrostatics com-

putations to the interpretation of intermolecular and in-
tramolecular processes that involve short-range interactions

such as enzyme-substrate binding, protein adsorption, and

protein pK_ shifts (Bashford and Karplus, 1991; Yoon and
Lenhoff, 1992: Roush et al., 1994).

Even within the constraints of these caveats, the com-

puted Hamaker constants can help shed light on observed

behavior. Specifically, the results in Table 4 are relevant to

analysis of the adsorption of proteins to solid interfaces,
which is involved in many physiological phenomena and in

processes of medical and engineering consequence. Differ-
ent views exist as to the primary mechanisms underlying

protein adsorption, and these are likely to vary strongly with
the particular protein, sorbent, and environmental condi-

tions. Our calculations and experimental evidence (Roth
and Lenhoff, 1995) indicate that van der Waals interactions,

although generally not strong enough to provide the total

driving force for many of the high-aff'mity isotherms that
are observed, contribute enough to adsorption to affect the

trends observed with respect to protein size. The strength of

this interaction is indicated by the Hamaker constant for a

protein interacting with the surface through a solvent (gen-
eraUy water or aqueous electrolyte), values of which are

shown in Table 4. Notwithstanding the uncertainties dis-

cussed above, the variation among materials is large enough
to indicate the relative strength of dispersion interactions in

each of the systems. For example, the inert nature of poly-

(tetrafluoroethylenel is reflected in its unusually low Ha-
maker constant. On the other hand, proteins would be ex-

pected to have a strong interaction with quartz and polymers
such as polystyrene. In fact, adsorption of proteins has been

found to occur on polystyrene under conditions of electro-

static repulsion as well as electrostatic attraction (Arai and
Norde. 1990; Haynes et al., 1994), although there are cer-

tainly a number of other factors that may also be at play in

this process.
Combining the geometric properties and the Hamaker

constant provides a convenient route to the description of

protein-surface and protein-protein interactions; it is partic-
ularly for the latter application that the colloidal approach is

an expedient alternative to the more widely used atomistic
methods. An illustration of their relative behavior is pro-

vided by a comparison of the van der Waals interaction

energies computed with the Hamaker method and those
calculated based on OPLS (optimized potemials for liquid

simulation) parameters (Jorgensen and Tirado-Rives, 1988).

The interaction energy calculated is for a system with a high

degree of surface complementarity, viz. that between the
antibody DI.3 F_b fragment (Amit et al., 1986) and its

antigen, lysozyme, as the molecules are moved apart along
a line perpendicular to their approximate contact surface.
The Hamaker constant used is that for protein-air-protein

interaction to compare to the OPLS parameters, which have

been optimized for short-range interactions; we have omit-
ted water molecules from the calculation.

Results are shown in Fig. 4 for gap distances of 5 ,/_ and

greater relative to the crystallographic structure; results for

smaller gaps are not shown because the van der Waals radii

overlap for the crystal structure of the complex and for the
first several angstroms when the complex is pulled apart.

Both techniques predict a highly attractive interaction en-

ergy much greater than kT at a distance of 5 /_, whereas at

larger gap distances the OPLS result is quite consistently
about double that of the colloidal method. The distance
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FIGURE 4 Comparison of colloidal (solid line) andOPLS(brokenline)
calculations of dispersion interaction energies between a lysozyme mole-
cule and lgG DI.3 F=bfragment. Distance is relative to the crystallographic
coordinates on an axis perpendicular tothe approximate surfaceof contact.
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dependence tor this interaction is approximately l/z at long

range as before, but at short range it is much stronger, in

view of the complementarity of the interacting surfaces. In

general the l/z dependence is expected to prevail at long

range, whereas the short-range dependence will vary, de-

pending on the degree of complementarity present. Al-

though the two methods yield essentially the same distance

dependence, the OPLS parameters yield interaction energies

that are greater in magnitude. This is presumably because

they are fitted to small-molecule physical property data and

include implicitly all attractive interactions, such as hydro-

gen bonding. Taking this into consideration, the colloidal

approach appears to provide an efficient route to estimation

of van der Waals interaction energies, except at very short

range. It may thus be a useful tool to incorporate into

multimolecular calculations, such as Brownian dynamics

simulations tZhou, 1993).

CONCLUSIONS

We have calculated the geometric and material contribu-

tions to van der Waals interaction energies involving pro-

teins. Our approach and results have two major implica-

tions. First, they provide insight into the role of van der

Waals interactions in protein solutions, particularly through

the findings that the geometric factor is considerably

smaller than is estimated using idealized shapes such as

spheres, and that its dependence on protein size is much

weaker. Because of these characteristics, the use of ideal-

ized models may severely overestimate the magnitude of

dispersion interactions, except when appreciable comple-

mentarity of apposing surfaces is either present initially or is

induced by the interaction. These results are pertinent to

protein properties such as solubilitv and adsorption behav-

ior. The second implication of the study is that the colloidal

approach provides a useful approach to capturing the same

types of structural detail as atomistic methods, but in a more

efficient fashion. This approach is likely to be especially

useful in developing rational simplifications for use in mul-

timolecular computations.
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